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A B S T R A C T

With a rapid increase in air traffic, aviation has become an increasingly important contributor to anthropogenic
air pollutants (particularly nitrogen oxides (NOX)) over China. This study provides the first overall estimation of
the aviation emissions from all civil airports in mainland China as well as the associated contribution to ambient
air quality. First, aircraft emissions (NOx, sulfur dioxide (SO2), carbon monoxide (CO), hydro-carbons (HC),
particulate matter (PM2.5 and PM10), volatile organic carbons (VOCs) and black carbon (BC)) during landing and
take-off cycles (below 3 km) are estimated for both recent (2000–2016) and future (2020) scenarios. Second, the
corresponding environmental impacts are measured by the Comprehensive Air Quality Model with extensions
(CAMx). The results have insightful policy implications for China's aviation planning. (1) Generally, China's
aviation emissions and their effect on air quality have been and will continue to increase. (2) Among species,
NOx dominated China's aircraft emissions in terms of both emission amount and environmental impact, while
PM2.5 generated an extensive influence. (3) With respect to spatial distribution, the air quality effect was highly
concentrated at emission-intense airports that served economic zones and/or tourist spots.

1. Introduction

The aviation sector, with a fast-growing market demand, has played
and will continue to play an increasingly substantial role in China's
economic system. According to the Civil Aviation Administration of
China (CAAC), aviation has become an important mode of transporta-
tion in China, and the annual number of air passengers and amount of
freight reached 440 million and 6.68 million tons in 2016, re-
spectively—approximately 2.75 and 1.92-fold above the figures for
2006 (CAAC, 2016). Furthermore, such a developmental tendency will
remain, and CAAC (2016) projected annual average increases of 10.4%
and 6.2% for air passengers and freight, respectively, during
2015–2020. Accordingly, approximately 720 million passengers and
8.5 million tons of freight are expected to fly in 2020.

Despite its vital role in economy, the aviation sector presents severe
environmental concerns, emitting massive amounts of air pollutants,
thereby deteriorating the ambient air quality. Aircraft activities, parti-
cularly landing and take-off (LTO) cycles (USEPA, 1992), generate a
large amount of harmful air pollutants, such as nitrogen oxides (NOx),
sulfur dioxide (SO2), carbon monoxide (CO), hydro-carbons (HC),

particulate matter (PM2.5 and PM10), volatile organic compounds
(VOCs) and black carbon (BC) (Song and Shon, 2012). These emissions
interact with each other and adversely impact the ambient atmospheric
environment, leading especially to haze or smog weather at the ground
level (Mahashabde et al., 2011) and a long-range effect on the ozone
layer (Janić, 1999; Brasseur et al., 1998). Furthermore, extended ex-
posure to these harmful air pollutants (particularly PM2.5) seriously
threatens human health, particularly with respect to heart and lung
diseases (Boldo et al., 2006; Franklin et al., 2007; Kampa and Castanas,
2008) and even causing premature death (Yim et al., 2013). Therefore,
environmental concerns regarding the aviation sector have received
growing and widespread attention.

Given this background, numerous studies have been conducted to
explore the impacts of aviation emissions on air quality, and the ana-
lytical techniques used generally fall into monitoring and dispersion
modelling-based approaches (Unal et al., 2005; Carslaw et al., 2008;
Mazaheri et al., 2011; Hu et al., 2009; Hsu et al., 2014). In particular,
the monitoring approaches measure the related variables (aircraft ac-
tivity, meteorology, pollutant concentrations, etc.) and then perform
statistical analyses on these measurements to estimate the aviation-
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attributable fractions; these approaches are suitable for analysing in-
dividual airports on a small scale (Penn et al., 2015). The dispersion
modelling-based approaches employ meteorology and numerical
models to simulate air quality on a large scale both horizontally and
vertically (Beelen et al., 2010). With respect to their advantages and
disadvantages, though highly accurate, the monitoring methods might
be somewhat limited to a relatively small scale in terms of the study
period, spatial coverage, meteorological conditions and flight activities
(Penn et al., 2015). In comparison, the dispersion modelling based
methods overcome these limitations (Beelen et al., 2010). Popular
dispersion models for studying aviation emissions contribution to air
quality include the Comprehensive Air Quality Model with extensions
(CAMx) (Foy et al., 2015; Tang et al., 2013), the Community Multiscale
Air Quality model (CMAQ) (Brunelle-Yeung et al., 2014), and the
American Meteorological Society and Environmental Protection Agency
Regulatory model (AERMOD) (Penn et al., 2015). Compared with other
models, CAMx, a multi-scale regional chemical transport model, parti-
cularly specializes in capturing synergistic effects among multiple pol-
lutants involved in different atmospheric physical processes and che-
mical reactions (Bossioli et al., 2013). Accordingly, the CAMx model
has widely been applied to analysing the impacts of aviation emissions,
e.g., in the US (Foy et al., 2015; Tang et al., 2013; Kemball-Cook et al.,
2009; Junquera et al., 2005) and Brazil (Borrego et al., 2010).

However, the existing research on China's aviation emissions and
their environmental impacts is insufficient. On one hand, an overall
estimation of aviation emissions from all China's airports is lacking, to
the best of our knowledge. In particular, previous studies were usually
restricted to one or several airports in China. For example, Bo et al.
(2017) focused on the emissions from Beijing Capital International

Airport of China and simulated their impact on the surrounding at-
mospheric environment. On the other hand, in studies with relatively
sufficient samples, such as that by Xia et al. (2008) for 123 airports in
China, aviation emissions were calculated, whereas the related con-
tribution to air quality was otherwise ignored. Therefore, the present
study intends to fill this gap in the literature and provide an overall
inventory of aviation emissions from all the civil airports in mainland
China (involving a total of 217 airports) as well as the related con-
tribution to the ambient air quality.

To the best of our knowledge, this study is the first attempt to
provide an overall, detailed estimation of aviation emissions from all
civil airports in mainland China as well as their corresponding con-
tribution to air quality. In particular, the aircraft emissions (NOx, SO2,
CO, HC, PM2.5, PM10, VOCs and BC) from a total of 217 airports in
China are calculated for both recent (2000–2016) and future (2020)
scenarios. In particular, emissions during the LTO activities below 3 km,
accounting for most contributions to the ambient atmospheric en-
vironment (USEPA, 1992), are focused on in this study. Furthermore,
the environmental impact of China's aviation emissions is simulated
using the CAMx model (Foy et al., 2015; Tang et al., 2013).

2. Methodology

This study provided an inventory of aviation emissions from all
China's civil airports for both recent (2000–2016) and future (2020)
scenarios and estimated the corresponding air quality contributions
based on the CAMx model, a multi-scale regional chemical transport
model (Bossioli et al., 2013).

Accordingly, two major steps were taken in this study. (1) The first

Fig. 1. Civil airports in mainland China.
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was inventory establishment for aviation emissions, in which the recent
(2000–2016) and future (2020) aircraft emissions (NOx, SO2, CO, HC,
PM2.5, PM10, VOCs and BC) during LTO cycles (below 3 km) from dif-
ferent civil airports in mainland China were estimated. (2) The second
was atmospheric modelling for the air quality contribution, in which
the CAMx model was implemented to explore the impacts of China's
aviation emissions on the ambient environment. Sections 2.1 and 2.2
elaborate on these two main steps, respectively, together with the re-
lated techniques.

2.1. Emission estimation

The aviation emissions for recent (2000–2016) and future years
(2020) were computed (i.e., NOx, SO2, CO, HC, PM2.5, PM10, VOCs and
BC), as presented in Sections 2.1.1 and 2.1.2, respectively. Fig. 1 dis-
plays the geographic locations and codes of the International Air
Transport Association (IATA).

2.1.1. Recent emissions
The contribution of aviation emissions to the ambient environment

varies greatly across different aircraft activities (Song and Shon, 2012).
The LTO cycles have widely been considered to impact the ground-level
air quality greatly, which is within the planetary boundary layer (ty-
pically below 1–3 km) (Woody et al., 2011; Jacob, 1999). Therefore,
this study especially focused on the LTO emissions from the surface to
3 km altitude. A LTO cycle covers two aircraft operations, landing
(approach, landing, and taxi-in to the gate) and take-off (taxi-out onto
the runway, take-off and climb-out) (ICAO, 1995). Typical estimation
methods for aircraft LTO emissions at airports are the Tier 1 and Tier 2
methods (EEA, 2009; IPCC, 2006). The Tier 1 method calculates
emissions in terms of the aggregate activity data multiplied by the
corresponding average emission factors:

= ⋅E LTO EF ,i j t i t j, , , (1)

where Ei,j.t is the annual emissions of air pollutant j at airport i for year t
(in kg), LTOi,t is the total number of LTO cycles conducted at airport i
for year t, and EFj is the general emission factor of air pollutant j per
LTO cycle (kg/LTO) (as listed in Table 1). The Tier 2 method relies on
detailed data for each aircraft type, engine type, and mode:

∑ ∑=E n I F E t ,i m
a e

a a e a e m e m i m a, , , , , , ,
(2)

where Ei,m indicates the annual emissions of pollutant i for mode m (kg/
y), na is the total number of engines of aircraft type a, Ia,e is the number
of annual LTO cycles for aircraft type a with engine type e, Fa,e,m is the
fuel consumption for aircraft type a with engine type e in mode m (kg/
s), Ee,m,i is the emission factor of engine type e in mode m for pollutant i
(g/kg), and tm,a is the time in mode m for aircraft type a (s).

A comparison of Eq. (1) and Eq. (2) clearly reveals a considerable
difference between the Tier 1 and Tier 2 methods. While the former is
based on overall activity data of each airport, the latter requires much
more detailed data for each aircraft type and engine type and the mode
of each airport. Currently, the detailed data required for Tier 2 are not
available for different airports nationwide. Therefore, the Tier 1
method, a simple estimation approach (Romano et al., 1999), was
employed in this study. Nevertheless, collecting the missing data and
providing a much more precise estimation for China's aviation emis-
sions would be valuable in the near future.

Concerning data sources, the annual numbers of LTO cycles at

different airports were collected by CAAC. Data quality control, invol-
ving missing data detection, error detection and possible error correc-
tions (Zahumenský, 2004), was conducted for the original data, and the
results supported the applicability and usability of the data. Emission
factors are widely available, e.g., in the Federal Aviation Adminis-
tration's Aviation Environmental Design Tool (Kim et al., 2007), FAA-
recommended Emissions and Dispersion Modelling System (FAA,
2010), and International Civil Aviation Organization-engine Emission
Data Bank (ICAO, 1995). In this study, emission factors for PM10, PM2.5,
HC, NOx, CO, VOCs and BC were from the Ministry of Environment
Protection of the People's Republic of China (MEP, 2011) and that for
SO2 was from Wang et al. (2018), as listed in Table 1.

2.1.2. Future emissions
The future scenario for 2020 was designed according to the related

planning and historical data (Yang et al., 2017; Ratanavaraha and
Jomnonkwao, 2015). In particular, the 13th Five-Year Plan for the
Development of Civil Aviation in China projected an upward growth in
aviation demand—approximately 0.72 billion passengers and 8.5 mil-
lion tons of freight are expected to fly in 2020. Accordingly, the overall
activity data, i.e., the aggregated LTO numbers throughout mainland
China, were assumed to follow similar development towards such ex-
pected demands.

Individual trends for different airports were captured based on the
historical data for 2000–2016 by using a typical econometric time-
series technique, autoregressive integrated moving average (ARMA)
(Box and Jenkins, 1976). The ARMA model includes two types of linear-
regressions: autoregressive (AR) and moving average (MA). Given a
time series ∈y t N,t (i.e., annual LTO numbers of an individual airport
for the period t for this study), the AR regression function is defined as
follows:

= + + …+ +− −y c a y a y u ,t t p t p t1 1 (3)

where a1, …,ap are the AR parameters, c is a constant, p is the order of
the AR, and ut is the white noise (error). The MA model is as follows:

= + + + …+− −y μ u m u m u ,t t t q t q1 1 (4)

where m1, …,mq are the MA parameters, q is the order of the MA, ut, ut-
1, …,ut-q are the white noise terms, and μ is the expectation of yt. By
coupling Eq. (3) with Eq. (4), an ARIMA(p, q) model can be formulated:

= + + …+ + + + …+− − − −y c a y a y u m u m u .t t p t p t t q t q1 1 1 1 (5)

A least-square estimation was conducted to determine the ARMA
parameters, and future values were projected based on Eq. (5) and the
historical observations.

It was assumed that there will still be 217 airports in mainland
China in 2020 without a new airport built or a constraint on the ca-
pacity of each airport (Yim et al., 2013). The future-year estimates did
not consider mitigation strategies, technology improvements, policy
reforms, or other related notable changes. Introducing the expected
activity data into Eq. (1) allows the future emissions to be projected.

2.2. Air quality modelling

The CAMx model, a popular chemistry transport model, was em-
ployed to explore the contribution of China's aviation emissions to the
air quality for the recent (2016) and future (2020) scenarios (Foy et al.,
2015; Tang et al., 2013). Specifically, the CAMx model is a regional
chemical transport model and runs based on meteorological data and a
well-built inventory of background emissions or target emissions (i.e.,
aviation emissions that are obtained by the estimation method de-
scribed in Section 2.1). Meteorology data and background emissions are
described in Sections 2.2.1 and 2.2.2, respectively, and Section 2.2.3
presents the air quality modelling.

Table 1
Aircraft emission factors (kg/LTO).

Emission species PM10 PM2.5 HC NOx CO VOCs BC SO2

Emission factor 0.54 0.53 2.68 16.29 9.14 1.95 0.26 1.40
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2.2.1. Meteorological data
In the atmospheric simulation, the meteorological field for 2016

was derived from the Weather Research and Forecasting model (WRF
3.4) (Yim et al., 2013; Wang et al., 2016). In particular, the WRF system
covers 20 sigma levels from the surface to 15 km altitude, with a hor-
izontal grid resolution of 36 km. The final operational global analysis
dataset from the US National Center for Environmental Prediction
(NCEP) and National Center for Atmosphere Research (NCAR) was used
to set the initial and boundary conditions of the WRF (Wang et al.,
2016). The land use/cover and topographical data were obtained from
the 30-s resolution default WRF input dataset. Notably, this study made
no attempt to investigate the effect of climate changes on the en-
vironmental impacts of aviation emissions, thus accounting for no
change in the meteorological fields for 2020 relative to 2016.

2.2.2. Background emissions
Baseline emissions covered all non-aviation anthropogenic and

biogenic emissions sources, excluding aviation sources. Anthropogenic
emissions of SO2, NOx, CO, PM2.5, NH3 and VOCs were obtained from
the Multi-resolution Emission Inventory for China at a 0.25 × 0.25°
resolution (MEIC 1.2, http://www.meicmodel.org) and the Regional
Emission inventory in Asia (REAS 2.1) at a 0.25 × 0.25° resolution
(Kurokawa et al., 2013). Biogenic emissions were derived from the
biogenic emission processor in the Model of Emissions of Gases and
Aerosols from Nature (MEGAN 2.0) (Guenther et al., 2006). These
background emissions data were further adjusted and updated ac-
cording to the latest official statistics (Wang et al., 2016; Du et al.,
2016). In particular, the sectoral emissions of SO2, NOx and PM10 were
modified according to the Annual Statistic Report on Environment in
China (2015). Source-based emissions for each sector were distributed
to gridded emissions according to the China Environmental Statistics
Yearbooks (2015) and Annual Statistic Report on Environment in China
(2015). Spares Matrix Operator Kernel Emissions (SMOKE 3.0) was
used to remap these emissions data into the CAMx model.

2.2.3. Simulation
CAMx 6.2.0 (Wang et al., 2014, 2016) was implemented in this

study as the atmospheric simulation technique for exploring the con-
tribution of China's aviation emissions to the ambient air quality. In
particular, the CAMx model is an efficient, flexible open-source system
incorporating frontier technical features required for air quality simu-
lation (ENVIRON, 2014).

As a three-dimensional Eulerian photochemical dispersion model,
the CAMx model allows an integrated assessment of gaseous and air
pollution on multiple scales from sub-urban to continental (Borrego
et al., 2010). The domain (160 × 200 grid cells) studied was centred at
(110°E, 35°N) on a Lambert-projected map of East Asia (see Fig. 1) with
a horizontal grid resolution of 36 km. In existing studies, the resolution
was usually set to 36 km in the air quality modelling at a national level,
e.g., for the US (Woody et al., 2011; Arunachalam et al., 2011) and
China (Wang et al., 2016). Therefore, the resolution of 36 km was used
in this study. Nevertheless, enhancing horizontal resolution is an im-
portant direction to further improve our simulation model. The vertical
axis covered 20 sigma levels ranging from the surface to 15 km altitudes
(i.e., the whole vertical column layer of CAMx model), in which 15
sigma levels were included in altitude below 3 km. Other model para-
meters, such as physical processes and chemical mechanisms, are listed
in Table 2. A 10-day spin-up simulation was conducted to produce in-
itial conditions, and the boundary condition of the global chemistry
transport model MOZART was used (Wang et al., 2016). For the planet
boundary layer (PBL), the CAMx model used a post-processor (VER-
TAVG) to read the input files of CAMx Kv, height, temperature, and
pressure for determining the PBL depth for each grid column at each
hour and then to average chemical process analysis variables and
concentrations over multiple layers within the depth of the PBL.

In this simulation, the most harmful air pollutants, i.e., NOx, SO2,

and PM2.5, were of specific interest (USEPA, 2011). To estimate the
impact of China's aviation emissions on the air quality, four scenarios
were designed, simulated and compared, as listed in Table 3. For each
scenario, the corresponding emission inventory, together with the me-
teorological data and environmental conditions, was introduced into
CAMx as the model input. Accordingly, CAMx simulated the emissions,
dispersion, physical processes and chemical reactions by the Eulerian
continuity equation and generated the time-dependent volume-aver-
aged pollutant concentration in each grid cell as the final result of
various physical and chemical interactions operating on that volume.
The environmental impact of aviation emissions can be computed in
terms of incremental concentrations (in μg/m3) and incremental rates
(%) under the scenarios with aviation emissions (i.e., A-16 and A-20)
relative to the respective baselines without aviation emissions (i.e.,
BAU-16 and BAU-20).

For model evaluation, previous studies (i.e., Wang et al., 2014;
Wang et al., 2016; Du et al., 2016; Chen et al., 2016; Li et al., 2015)
have evaluated the CAMx simulation output. To verify the simulation
results, real monitoring data (i.e., concentrations of NOx, SO2, PM2.5,
aerosol nitrate and aerosol sulfate) from 3 monitoring stations in
Beijing, Tianjin and Shijiazhuang and 15 stations in the acid deposition
monitoring network for East Asia were introduced (Wang et al., 2014,
2016; Du et al., 2016). Statistical analyses were conducted to compare
the simulations from our model and the observations at monitoring
stations, including the Pearson correlation coefficient (R), normalized
mean bias (NMB), normalized mean error (NME) and root-mean-square
error (RMSE) (Yu et al., 2006). The comparison results indicated that
our simulated concentrations for different species (i.e., NOx, SO2,
PM2.5, PSO4 and PNO3) showed reasonable agreement with observa-
tions in terms of R (around the mean of 0.71), NMB (−20.78%), NME
(47.43%) and RMSE (1.73 μg/m3).

3. Results and discussion

According to the two steps of the methodology, an overall, detailed
inventory of China's aviation emissions was first produced, with the
results reported in Section 3.1. Then, the corresponding contribution to
the air quality was estimated based on the CAMx simulations, as dis-
cussed in Section 3.2.

3.1. Aviation emissions

For a clear discussion, the estimation results for China's aviation
emissions were analysed from the temporal, species and spatial per-
spectives.

Table 2
Numerical methods employed in CAMx.

Process Numerical Method

Horizontal advection PPM
Vertical diffusion Standard K Theory
Dry settlement parameterization scheme WESELY89
Chemical mechanism of liquid phase RADM-AQ
Gas phase chemical mechanism SAPRC99
Aerosol module CF Scheme
Thermodynamic equilibrium model of aerosol ISORROPIA

Table 3
CAMx modelling scenarios.

Scenario Emissions Year

BAU-16 Background emissions 2016
A-16 Background emissions + aviation emissions 2016
BAU-20 Background emissions 2020
A-20 Background emissions + aviation emissions 2020
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Concerning temporal evolution, Fig. 2 illustrates the overall growth
of China's aircraft emissions during 2000–2016. In particular, the total
amount of all targeted pollutants from China's civil airports climbed
from approximately 28,588 tons in 2000 up to 151,369 tons in 2016,
with the annual growth rates ranging between 0.08 and 25.84%. Not
surprisingly, such a rising trend is consistent with the continuously fast-
growing demand for civil aviation—with average annual growth rates
of 13.52% for air passengers and 10.42% for freight during 2000–2016.
Two obvious inflection points occurred in 2003 and 2008, when the
growth rate of China's aviation emissions fell sharply, though they re-
bounded quickly. The hidden reasons might be related to the occur-
rence of acute respiratory syndrome (SARS) during 2002–2003 and the
global financial crisis during 2008–2009, which suppressed China's
aviation demand severely. In the future scenario, according to China's
13th Five-Year Plan, the aviation demand will still rise; thus, China's
aviation emissions might continue to grow, with the predicted overall
amount in 2020 being approximately 1.40 times the 2016 level.

From a species perspective, Fig. 2 reveals that NOx dominated
China's aircraft emissions, followed by CO and HC, while BC accounted
for the smallest share. For example, the aviation emissions of NOx, CO,
HC, VOCs, SO2, PM10, PM2.5 and BC throughout mainland China were
estimated to be approximately 75246, 42219, 12379, 9007, 6374,
2494, 2448 and 1201 tons in 2016, respectively, making up approxi-
mately 49.71, 27.89, 8.18, 5.95, 4.21, 1.65, 1.62 and 0.79% of the
aggregated amount. It is worth noting that these proportions didn't
change over time due to a limitation of the Tier 1 method in which a
fraction of each species in the total emissions is assumed to be a con-
stant. Nevertheless, our result highlighting NOx as the top prevailing
aviation emission is consistent with the results of previous studies (e.g.,
Penner, 1999; ICAO, 2007). Unfortunately, NOx has widely been ac-
knowledged to be one of the most harmful air pollutants, as a de-
termining factor in forming acid rain (Brasseur et al., 1998) and
ground-level ozone or smog (Mahashabde et al., 2011). Therefore, ef-
ficient measures are strongly recommended to curb such a large mag-
nitude of NOx emitted from China's airports, especially for improving
air quality and associated public health.

Regarding the spatial distribution, Fig. 3 displays the detailed
emissions at the 217 airports in China, and two insightful findings are of
particular note. On one hand, China's aviation emissions are

concentrated intensively at certain airports. For example, the top 20
emission-intensive airports out of the 217 accounted for approximately
57.37% of China's total aviation emissions in 2016, with the aggregated
amount of NOx, SO2, CO, HC, PM2.5, PM10, VOCs and BC reaching
approximately 86,848 tons. Among these airports, Beijing Capital In-
ternational Airport (PEK) yielded the highest proportion (approxi-
mately 6.56% in 2016), closely followed by Shanghai Pudong Inter-
national Airport (PVG) (5.19%) and Guangzhou Baiyun International
Airport (HGH) (4.17%). On the other hand, these emission-intensive
airports are mostly around metropolitan areas with a high level of
economic development (e.g., PEK and PVG) and/or tourist areas (e.g.,
HGH, Kunming Changshui International Airport (KMG) and Sanya
Phoenix International Airport (SYX)). The hidden reasons for this
phenomenon are easy to understand, i.e., that economic development
requires transportation support for both labour and freight, while
tourists are potential air passengers, and both factors directly stimulate
the aviation demand and hence the emissions. Notably, the Belt and
Road Initiative begun in 2013 has led to flourishing airports along the
route, such as Xi'an Xianyang International Airport (XIY), Lanzhou
Zhongchuan International Airport (LHW), and Urumchi Diwopu Inter-
national Airport (URC).

3.2. Environmental contribution

The contribution of China's aircrafts to the air quality was simulated
by the CAMx model and presented by incremental concentrations (in
μg/m3) and incremental rates (%) due to aviation emissions. Fig. 4
displays the spatial distribution of the contributions, and Fig. 5 shows
the average speciated contributions.

Comparing the 2016 and 2020 scenarios reveals that China's avia-
tion emissions are projected to contribute much more to diminishment
of the ambient air quality in future years. In particular, the spatial
impact of aviation emissions (shown in Fig. 4) is predicted to have a
greater spatial extent and exhibit higher values in 2020 (in the right
column). The simulation results for the contribution averaged across
mainland China (Fig. 5) indicate that aircraft emissions will enhance
the concentrations (and incremental rates) of NOx, SO2 and PM2.5 by
approximately 0.3055 μg/m3 (1.9166% of the total NOx), 0.0178 μg/
m3 (0.2425% of the total SO2) and 0.0452 μg/m3 (0.1396% of the total

Fig. 2. Estimated aviation emissions (bars, right axis) and growth rate (lines, left axis) in China.
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PM2.5) in 2020, respectively, which are approximately 1.4014 (1.3908),
1.4016 (1.5251) and 1.3823 (1.4201) times the corresponding con-
centrations (and incremental rates) in 2016. Such a substantial increase
in future contributions is closely related to the unavoidable growth of
the aviation demand and, hence, the activity levels expected in China's
13th Five-Year Plan. For instance, the Belt and Road Initiative has
greatly increased the aviation demands in the airports near the Belt and
Road, thereby increasing their aviation emissions and environmental
impact (Jia, 2017), such as XIY along the Silk Road (see the high PM2.5

increase near Xian in Fig. 4). Against this background, energy con-
servation and technological innovations to reduce emission factors
become effective methods to curb aviation emissions and the associated
environmental impacts (Kurniawan and Khardi, 2011). Promising
measures are as follows: replacing the auxiliary power units with air-
port ground power, which could reduce the emission factors by ap-
proximately 0.6% (Kesgin, 2006); applying a multi-fuel (e.g., liquid
natural gas and kerosene) hybrid engine, which could reduce the NOx
emission factor by over 80% (Yin et al., 2018); and introducing a dual
combustion chamber, which could reduce the PM emission factor by
approximately 60% (Grewe et al., 2017).

Among emission species, NOx from China's airports is simulated to
impact air quality the most in terms of the highest average contribution
(see Fig. 5), whereas PM2.5 might generate the most extensive influence
in terms of the widest distribution (Fig. 4). On one hand, the average
contribution of aircraft emissions to NOx is estimated to be approxi-
mately 0.2180 μg/m3 (1.3781%) in 2016, which is far above the figures
for SO2 and PM2.5 (i.e., 0.0127 μg/m3 (0.1590%) and 0.0327 μg/m3

(0.1396%), respectively). The hidden reason might be that NOx dom-
inates China's aircraft emissions in terms of the amount (discussed in

Section 3.1), thereby enhancing the corresponding concentration to the
largest extent. On the other hand, even with a relatively small average
contribution, PM2.5 from aircrafts influenced the broadest geographic
area, even beyond China's borders. According to Fig. 4, the areas of the
total grids with average incremental contributions above 0 μg/m3

reached 9.65, 4.81, and 10.28 million km2 for NOx, SO2 and PM2.5,
respectively, in 2016.

The spatial distribution of the environmental impact (see Fig. 4)
seems to be quite similar to that of the estimated emissions (Fig. 3),
being highly intensive at some similar airports. Fig. 6 presents the top
20 airports with the largest contributions, which are consistent with the
results of Fig. 4 in that emission-intense airports are the greatest con-
tributors to air quality. Two conclusions can be drawn regarding the
underlying factors. On one hand, airports serving metropolitan areas
with a high level of economic development might highly impact the
ambient air quality. For example, the outstanding airports generating
the largest environmental impacts include Guangzhou Baiyun Interna-
tional Airport (CAN) for Guangzhou (e.g., enhancing the NOx con-
centration by approximately 6.66% in 2016), PVG for Shanghai
(6.44%) and PEK (3.79%) for Beijing. For further analysis, Fig. 8 plots
the incremental contributions (in μg/m3) due to aviation emissions
against the gross domestic product (GDP) (in RMB yuan) for each
province or municipality. A linear regression is conducted on the re-
lationship between GDP and aviation impacts, with the corresponding
results listed in Table 4. The regression coefficient (in Columns 2, 6 and
10 of Table 4) indicates a positive impact of GDP on aviation impacts,
and t- and F-statistics statistically support this relationship at a con-
fidence level of 95%. The hidden reason might be that economic growth
would largely enhance transportation demand (including aviation

Fig. 3. Estimated aviation emissions at 217 airports in China in 2016.
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Fig. 4. Spatial distribution of the contribution of China's aviation emissions to NOx (a and b), SO2 (c and d) and PM2.5 (e and f) in terms of incremental con-
centrations (μg/m3).
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Fig. 5. Average contributions of China's aviation emissions to NOx, SO2 and PM2.5 in terms of incremental concentration (a) and incremental rates (b).

Fig. 6. The top 20 contributors to ambient air quality for 2016 (a) and 2020 (b) in terms of incremental concentrations (μg/m3).

Fig. 7. The top 20 contributors to ambient air quality for 2016 (a) and 2020 (b) in terms of incremental rates (%).
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demand) (Tsui et al., 2018), and the growth in aviation demand would
lead to an increase in aviation emissions and the associated environ-
mental impacts (Song and Shon, 2012; Hsu et al., 2014). It is worth
noting that Beijing and Shanghai are highlighted as two super-polluting
sources of aviation emissions, making disproportional contributions to
the environmental conditions. The hidden reason might be their ex-
tremely large volume of aviation services, accounting for 12.87 and
22.87% of the total air freight and 9.29 and 6.46% of China's total air

passengers, respectively, in 2016.
On the other hand, the tourism industry has become another leading

driver of China's aviation emissions and air quality contributions.
According to Fig. 7, the airports with the greatest environmental im-
pacts are SYX, serving the famous tourist city of Sanya; Jiuzhai
Huanglong Airport (JZH), serving Jiuzhai; Lijiang Sanyi International
Airport (LJG), serving Lijiang; Qamdo Bangda Airport (BPX), serving
Changdu; and Daocheng Yading Airport (DCY), serving Daocheng. With

Fig. 8. Aviation emissions' contribution (μg/m3) to NOx (a), SO2 (b) and PM2.5 (c) and GDP for 31 provinces or municipalities (black squares) of mainland China in
2016.

Table 4
Results of linear regression analyses on the relationship of GDP and aviation environmental impacts.

Variable Model 1 (Y is NOX; Fig. 8(a)) Model 2 (Y is SO2; Fig. 8(b)) Model 3 (Y is PM2.5; Fig. 8(c))

Coeff. t-stat. p-value Std. Coeff. t-stat. p-value Std. Coeff. t-stat. p-value Std.

GDP 0.32∗∗ 2.29∗∗ 0.03 0.14 0.02∗∗ 2.58∗∗ 0.02 0.01 0.06∗∗∗ 3.63∗∗∗ 0.00 0.02
N 28 28 28
F-stat. 5.26∗∗ 6.66∗∗ 13.19∗∗∗

Notes: the two outliers, Beijing and Shanghai, are not considered in the regression analysis; *** and ** denote significance at 1% and 5%, respectively.
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large traffic flows, these airports enhanced the ambient concentration
of NOx, for example, by approximately 14.94, 14.51, 11.30, 11.10 and
8.48% in 2016, respectively. Considering the current boom in tourism,
aircrafts near tourist cities have become important sources of air pol-
lutants, which should not be ignored.

4. Conclusions

In this study, an overall, detailed inventory of China's aircraft
emissions, as well as the corresponding contributions to air quality, is
generated. Unlike existing related studies focusing on certain airports,
this study is the first attempt to consider all civil airports in mainland
China, covering a total of 217 samples. First, aviation emissions (NOx,
SO2, CO, HC, PM2.5, PM10, VOCs and BC) at each airport are estimated
for both recent (2000–2016) and future (2020) scenarios. Second, the
corresponding contribution to air quality is simulated by the CAMx
model. Insightful results can be obtained as follows. Concerning tem-
poral evolution, China's aviation emissions and the associated con-
tributions to air quality have followed and will continue to follow an
upward trend. Among pollutant species, NOx dominated China's air-
craft emissions in terms of both emission amount and environmental
impact, while PM2.5 generated an extensive influence. In terms of
spatial distribution, the air quality contributions are highly con-
centrated at emission-intense airports, which serve either economic
zones with a high level of economic development and/or tourist spots
attracting a large number of tourists.

Many topics require further investigation in future research. First,
due to data availability, the Tier 1 method, based on the general
emission factors per LTO cycle, is used. However, a more detailed
emission estimation for different aircraft operational modes is also an
important task. Second, investigating the public health impact of
China's aviation emissions would be an insightful extension to this
study. Third, in addition to LTO activities, the upper-layer cruise above
3 km altitude also significantly influences air quality in the boundary
layer (Barrett et al., 2010; Lee et al., 2013) and could also be considered
in aviation emission estimations. Third, it is necessary to validate the
estimated emissions against other observations from independent
sources. Fourth, thoroughly comparing aviation emissions and those
from other sources is also an important task to identify the pollutants
from aviation that are a major source of anthropogenic air pollutants.
Finally, in the future-year estimation, important factors, e.g., mitigation
strategies, technology improvements and policy reforms, could be in-
cluded. We will investigate these insightful issues in the near future.
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